






second half of this time-window it is ’15 Hz, which is
near the frequency of the others oscillators. In T1d two
synchronized clusters emerge; the first one consisting of
u1 and u3 at ½16, 20� Hz and the second one consisting
of u4 and u5 (see their frequency regimes in (b)). The

oscillator u2 also joins the second synchronized cluster
delayed by a small time lag (see the real frequency of u2

in (b)). In this time-window u2 leaves the area near its
natural frequency (w2 = ½14:5, 15:2� Hz, not shown in
the image) and joins the second cluster at a lower fre-
quency (’10 Hz). At the end of T1d , all oscillators syn-
chronize again and a similar regime of transiently
synchronized clusters as in T1a, T1b, T1c and T1d repeats
over and over until the end of T1.

The synchronization dynamics underlying SMT2
are

simpler than those underlying SMT1
(see Figure 7). In

T2a, all five oscillators form a single synchronized clus-
ter with u4, u5 joining the assembly slightly delayed. In
T2b, u4 and u5 fall apart leaving the synchronized clus-
ter with u1, u2 and u3. A similar regime of synchroniza-
tion (as in T2a, T2b) repeats over and over until the end
of T2.

In this section we have analyzed the dynamics of the
embodied oscillatory network underlying short inter-
vals of the agent’s sensorimotor coordination. Three
dynamical descriptions of the oscillatory dynamics
have been presented: P, Sa and Sb. The phase relation
dynamics P provided a complete description of the
oscillations, we have studied particularly P(f1, 5). The
synchronization dynamics Sb provided the dynamics
during moments of synchrony and left out the informa-
tion about the phase relations during moments
of desynchronization. The binary synchronization
dynamics Sa provided only the information whether a

Figure 5. Synchronization dynamics for θ1 and θ5 (Sb(φ1,5)) underlying sensorimotor regimes SMT1
(a) and SMT2

(c). The relation
φ1,5 is shown in the y-axis and time in the x-axis. The color bar shows _φ1,5, where the darker the color the lower the derivative.
Dashed lines highlight the small time-windows T1a, T1b, T1c and T1d (a) and T2a and T2b (c). These images were generated for ts = 15
rad/s. The disperse gray dots represent phase relations that were shuffled. The derivative _φ1,5 is greater than 15 rad/s during the
entire time-windows T1b and T2b. (b) and (d) show the density distribution of each regime of phase relation. (e) shows the difference
on the density distributions.

Figure 6. (a) shows the synchronization dynamics for the
multivariate time series Sa underlying SMT1

. The y-axis contains
all pairs of oscillators and each black point in the image
corresponds to a moment of synchrony. (b) shows the
frequency dynamics of all five oscillators (see legend).
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pair of oscillators was either synchronized or not and
left out the phase of synchrony. In the next section we
analyze how the information present in Sb about the
SM varies as the value of ts decreases. In other words,
we analyze whether and how the information present in
oscillatory dynamics changes as reduced descriptions of
phase relations are considered.

5.2 Informational content in reduced descriptions
of P

Figure 8(a) presents the individual entropies of the sen-
sorimotor components s1, s2, m1 and m2. During the
whole trial, the entropies maintain around 5 and 5.5
bits with higher variations from 80 s, which corresponds
to the moment where the agent starts moving around
the light. The mean entropies for each component over
the whole trial are H(s1)= 5:34, H(s2)= 5:38,
H(m1)= 5:03 and H(m2)= 5:21 bits (values not shown
in the image).

The mutual information between a component from
SM and another from the complete description P are
presented in Figure 8(b). Though the sensor s1 has a
mean entropy H(s1)= 5:34 bits, the highest mutual
information between s1 and the network phase rela-
tions is given by I(SM(s1); P(f5, 4)) which has a peak of
1.74 bits at the beginning of the agent’s lifetime – see
dark black line in Figure 8(b) – and a mean
I(SM(s1); P(f5, 4))= 1:17 bits over the trial. The highest
mutual information between s2 and the phase relations
is given by I(SM(s2); P(f5, 1)) with a peak of 2.05 bits at
90 s – see gray line in Figure 8(b) – and a mean

I(SM(s2); P(f5, 1))= 2:05 bits over the trial. The high
values of H(s1) and H(s2) (around 5 bits) and the low
values I(SM(s1); P(fi, j)) and I(SM(s2); P(fi, j)) suggest
that the information about the sensory dynamics is dis-
tributed over the network.

The mutual information between motors and phase
relations is high in the relation f4, 3, as shown by
I(SM(m1); P(f4, 3)) in Figure 8(b). This high value is
expected as m1 is controlled by f4, 3, as in equation (5).
The value of I(SM(m2); P(f5, 3)) (not shown in the fig-
ure) is also high as m2 is controlled by the relation f5, 3.
Despite the predominance of information about m1

and m2 in f4, 3 and f5, 3, respectively; the other phase
relations also contain information about the motor
dynamics. I(SM(m2); P(f3, 2)), for instance, maintains
near 2.5 bits during the first ;75 s and then it decays
to ½0:5, 1:5� bits with a peak around 145 s, see dashed
line in Figure 8(b).

We have shown the mutual information between four
different pairs of components, but in total there are 40
possible combinations considering 4 elements in SM and
10 in P (or Sb). In order to capture how the mutual
information in the phase relations decreases as P is
reduced to Sb we take the mean of all 40 possible combi-
nations of mutual informations, which will be referred
to as I(SM ,P) and I(SM , Sb) for the complete and
reduced dynamical descriptions, respectively. Figure 9

Figure 7. (a) shows the synchronization dynamics Sa underlying
SMT2

. Each black point corresponds to a moment of synchrony
between the pair of oscillators depicted in the y-axis. (b) shows
the frequency dynamics of all five oscillators (see legend).
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Figure 8. (a) shows the entropy (y-axis) of each sensorimotor
component (see legend) during the agent’s lifetime (x-axis).
Straight dotted line at the top (y= 5:64 bits) represents the
maximum possible value for the entropies. (b) shows the mutual
information between four combinations of components from
SM and P, namely I(SM(s1); P(φ5,4)), I(SM(s2); P(φ5,1)),
I(SM(m1); P(φ4,3)) and I(SM(m2); P(φ3,2)), see legend.
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presents I(SM ,P) and I(SM , Sb) for three different values
of ts. The highest mean mutual information over the trial
is given by the complete description I(SM ,P)= 1:50

bits. As P is reduced by decreasing the threshold ts the
mutual information also decreases. For the values of ts
analyzed ts = 18, ts = 9 and ts = 3, the mutual informa-
tion reduced to I(SM , Sb1)= 1:05, I(SM , Sb2)= 0:74,
and I(SM , Sb3)= 0:40 bits, respectively.

In order to analyze the relation between mutual
information and different values of threshold, the mean
I(SM , Sb) is used. The maximum value of I(SM , Sb) is
1.50 bits which is obtained with a high value of ts that
makes Sb =P; in our model, Sb =P when ts = 90. In
order to get a better visualization of the decay in mutual
information as the value of ts decreases, the maximum
mutual information I(SM , Sb)= 1:50 bits for ts = 90

was rescaled to 1 (see Figure 10(a)).
As the threshold decreases from 90 to 40, the phase

relation loses only 10% of its information about the
sensorimotor dynamics, as shown by I(SM , Sb)= 1 for
ts = 90, and I(SM , Sb)= 0:9 for ts = 40 rad/s. As ts
decreases the rate of decay for I(SM , Sb) increases. For
ts = 20 rad/s the phase relations still carry 0.73 of the
total information and from ts = 20 to ts = 1 the infor-
mation drops to 0.21. The rapid decay of information
for low values of ts initially suggests that the more syn-
chronized the phase relations the more information
they carry about sensorimotor dynamics.

This result, however, should be analyzed together
with the quantity of (de)synchronized phase relations

for each threshold. If the values of _fi, j were uniformly
distributed in the range [0,90], then just by moving the
threshold we would know the quantity of synchronized
and desynchronized phase relations. As in our model,

Figure 9. Mean mutual information between all 40 pairs of
sensorimotor and phase relation components. I(SM,P) shows the
maximum mutual information in the phase relations throughout
the trial (see time in the x-axis). I(SM,Sb1), I(SM,Sb2) and
I(SM,Sb3) represent the mutual information from three reduced
description with thresholds ts = 18, ts = 9 and ts = 3 rad/s
respectively. The lower the ts the less information present in the
reduced descriptions. The numbers highlighted with gray
background at the end of each line represent the mean mutual
information over the whole trial, namely I(SM,P)= 1:50,
I(SM,Sb1)= 1:05, I(SM,Sb2)= 0:74, and I(SM,Sb3)= 0:40 bits.
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Figure 10. Mutual information between the phase relations
and the sensorimotor dynamics for different values of ts. The
black line in (a) shows how I(SM,Sb) changes as the threshold ts
decreases (notice inverted x-axis). The values of I(SM,Sb) are
normalized in [0,1] with 1 representing the maximum
I(SM,Sb)= 1:50 bits. The gray line shows the cumulative function
distribution (cdf) of _φi,j. It represents the quantity of _φi,j greater
than a ts; for instance, 20% of _φi,j are greater than 30 rad/s. (b)
shows how I(SM,Sb) (y-axis) changes in relation to the amount
of data in the dynamical descriptions (i.e. the quantity of phase
relations considered to be synchronized), where the maximum
value 1 (x-axis) represents the complete description and smaller
values represent reduced descriptions obtained by decreasing
the threshold. For instance, when Sb contains 0.3 of the
dynamics of phase relations (the other 0.7 are desynchronized
oscillations) then I(SM,Sb)= 0:34; i.e. 30% of the most
synchronized oscillations carry 34% of the total amount of
information about sensorimotor dynamics; the other 70% of
oscillations, which are desynchronized, carry the remaining 66%
of the total information.
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this distribution is not uniform, represented by the gray
line in Figure 10(a), it is important to analyze how the
mutual information I(SM , Sb) changes in relation to the
amount of data in the reduced description (i.e. the
quantity of phase relations considered to be synchro-
nized), as presented in Figure 10(b). As the amount of
data in the dynamical description increases – by increas-
ing the threshold – the mutual information I(SM , Sb)
also increases at a linear rate. When half of the most
synchronized oscillations are included in the dynamical
description then I(SM , Sb)= 0:51, meaning that half of
the phase relation dynamics carry half of the informa-
tion about the sensorimotor dynamics.

The linear relation between the mutual information
and the amount of data in the dynamical description
suggests that neither synchronized nor desynchronized
oscillations carry a privileged status in terms of informa-
tional content about sensorimotor dynamics. The infor-
mational content is equally distributed throughout the
entire range of phase relations. The more a dynamical
description leaves phase relations in the oscillatory net-
work out of the equation, the less information it carries
about the sensorimotor coordination, independently
whether the left-out phase relations represent either
synchronous or desynchronous oscillations.

5.3 Causal relevance of synchronous and
desynchronous oscillations

In this section we present the experiment we carried out
to investigate the causal relevance of desynchronous
and synchronous oscillations in the generation of func-
tional sensorimotor dynamics. In the experiment we
compare the agent’s behavioral performance using the
fitness function in equation (8) after applying perturba-
tions to its oscillatory network in either of the situa-
tions: during moments of synchronization ( _fi, j(t)< ts),
or during moments of desynchronization ( _fi, j(t). ts).
The perturbation is applied to the connections between
the oscillators i and j (ki, j and kj, i) by adding a random
number from a Gaussian distribution (m= 0,
s2 =aki, j), where a is a perturbation level parameter.
If the agent’s performance equally drops under the
same perturbation level a applied to synchronous and
desynchronous oscillations then it indicates that both
oscillatory dynamics have the same relevance to the
generation of functional sensorimotor coordinations.
On the other hand, if the performance does not decay
equally then the oscillatory dynamics that cause a
greater decay are the more relevant.

A critical point of this experiment is the threshold

from which an oscillation is considered to be either
synchronized or desynchronized. If we consider,
for instance, that synchronous oscillations are below
2 rad/s then perturbations applied to desynchronous
oscillations will probably cause a greater decay in the

agent’s performance as the range of perturbations is
wider ( _fi, j.2 rad/s). Figure 11 presents the agent’s fit-
ness for three different values of thresholds ts and per-
turbation levels a. Each fitness represents an average
over 200 trials.

For ts = 1, desynchronized oscillations are more rel-
evant than synchronized ones to the agent’s perfor-
mance, which can be seen by the fitness difference (gray
line) and by Fs � Fd = 0:24. Notice that for ts = 1 and
a\0.1 (see (a)) the agent’s performance is not affected
when perturbations are applied to synchronous oscilla-
tions. As a increases from 0.1 to 0.2 both fitnesses
decay, and for a.2 the perturbations to desynchronous
oscillations have a greater effect on the agent’s fitness,
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Figure 11. Agent’s fitness (y-axis) for different levels of
perturbations α (x-axis) and thresholds ts = 1 (a), ts = 9 (b), and
ts = 80 (c). Black and dark-gray lines show the fitnesses of the
agent when perturbation is applied to synchronous and
desynchronous oscillations, respectively (see legend). The
light-gray line is the fitness difference Fitnesssynchronization�
Fitnessdesynchronization (see legend). The numbers highlighted with a
gray background show the mean of the fitness difference over all
perturbation levels. This mean will be referred to as Fs � Fd.
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as shown by an increase in the fitness difference. For
ts = 9, both types of oscillations are equally important
as the fitness difference maintains near zero for all lev-
els of perturbation which gives a mean Fs � Fd = 0.
For ts = 80, all levels of perturbation to desynchronous
oscillations do not affect the agent’s performance
(dark-gray line maintains near 1 for all perturbations).
The reason for that is that there are very few occur-
rences (’0:04%) of _fi, j.80 rad/s.

In order to analyze how the relevance of desynchro-
nous oscillations changes in relation to the threshold,
the mean of the fitness difference (Fs � Fd) is used (see
Figure 12). The values of Fs � Fd vary within
’½�0:4, 0:4�, where �0:4 indicates that desynchroniza-
tion is not relevant for sensorimotor behavior and 0.4
indicates its maximum relevance. This interval is also
presented in a scale ½0, 1� – right y-axis in Figure 12 –
and from now on we will use this scale to discuss the
relevance of desynchronous oscillations. For values of
threshold below ’7 rad/s desynchronous oscillations
are more relevant than synchronous ones, which can be
seen by Fs � Fd.0.5. Both types of oscillations are
equally relevant when ts’½7, 11� and above this range
the relevance of desynchronous oscillations is smaller.
For ts = 40, for instance, desynchronization has
’0:125 of relevance to the agent’s sensorimotor coordi-
nation. The relevance of desynchronous oscillations
measured only in terms of the threshold do not take
into account the distribution of _fi, j over the range
[0,90]. Similarly to the analysis of mutual information
presented in the previous section, a more robust mea-
sure of causal relevance should also consider the distri-
bution of _fi, j.

As the threshold increases, the quantity of phase
relations that are considered desynchronized decreases,
this relation is represented by the distribution function
of _fi, j shown in Figure 13(a). This result is similar to
the one presented for the single agent we analyzed in
the previous section; here, however, we perturbed the
desynchronous oscillations with a 2 ½0, 0:6� and for
each pair (a, ts) we ran 200 trails. When ts = 20, 0.30 of
the total number of phase relations are desynchronized,
and when ts increases to ts = 40, for instance, the num-
ber of desynchronized phase relations decreases to 0.13
of the total phase relations.

Figure 13(b) shows the relevance of desynchronized
oscillations, i.e. Fs � Fd, in relation to the quantity of
phase relations considered desynchronized, i.e. _fi, j . ts.
When 0.5 of the total number of phase relations –
which includes all _fi, j.10 – are considered

Figure 12. Mean of fitness difference Fs � Fd (y-axis on the
left) for different thresholds ts (x-axis). Positive values indicate
that desynchronization is more relevant than synchronization
for the generation of functional sensorimotor coordination. The
y-axis on the right side represents Fs � Fd rescaled to [0,1].
When the rescaled Fs � Fd is 0.5, for instance, both types of
oscillations are equally relevant. The rescaled Fs � Fd works as
an index of relevance for desynchronous oscillations, where 0
indicates no relevance and 1 maximum relevance.
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Figure 13. (a) shows how the quantity of desynchronous
phase relations changes (y-axis) for different thresholds (x-axis).
Bars represent the standard deviations. Near 50% of the phase
relations have their derivative _φi,j < 10 rad/s. (b) shows how the
relevance of desynchronized oscillations, i.e. Fs � Fd rescaled to
[0,1], changes in relation to the quantity of phase relations
considered desynchronized (x-axis).
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desynchronized then these oscillations will have 0.48 of
relevance for the agent’s fitness; and when 0.95 of the
total number of phase relations – which includes all
_fi, j.1 – are considered desynchronized then these
oscillations will have 0.82 of relevance. Notice that the
synchronized phase relations below 1 rad/s actually
play an important role in the generation of the agent’s
behavior. While 0.95 of phase relations – which
includes all _fi, j.1 – has 0.82 of relevance, the remain-
ing 0.05 of phase relations – which includes all _fi, j < 1

– has 0.18 of relevance.
This result indicates that oscillations synchronized

with a narrow window of frequency difference – in our
model this window was of 1 rad/s in a range of fre-
quency differences from 0 to 90 rad/s – are relatively
more causally relevant for the generation of functional
sensorimotor coordination than the rest of the oscilla-
tions with higher frequency differences. That is not to
say that the ‘rest’ of the oscillations are not relevant, as
they still carry 0.82 of relevance. Apart from the range
of _fi, j < 1, the causal relevance of the phase relations is
distributed over the range of possible _fi, j values with-
out any privileged status of causal relevance to either
synchronous or desynchronous oscillations

6 Discussion and conclusion

As far as methodological aspects are concerned, we
have combined evolutionary robotics with Kuramoto
oscillators to study the roles played by synchronous
and desynchronous oscillations in the context of a sen-
sorimotor coordination task. We have used
information–theoretic measures and dynamical system
concepts to analyze the system. The model was not
meant to target any specific level of abstraction from
individual neurons and very small circuits (Izhikevich,
2007) to the whole cortex and brain activity (Buzsaki,
2006; Varela et al., 2001). Our goal was rather to repro-
duce at a merely conceptual level of generality the type
of data from which the significance of synchronization
is generally privileged and to show how a system does
in fact functionally exploit the whole phase dynamic to
achieve a coherent sensorimotor coordination. Such a
proof of concept should not be taken as an empirical
model – see Barandiaran and Moreno (2006), for a dis-
tinction between conceptual and empirical models.

The results obtained from the analysis of the model
give some insights to help answer the question: how
does the informational content of the sensorimotor activ-
ity present in a complete dynamical description of phase
relations change as such a description is reduced to the
dynamics of synchronous oscillations? In our particular
model, the informational content was equally distribu-
ted throughout the entire range of phase relations; the
more the dynamical description was reduced the less
information it carried about the sensorimotor

coordination. Neither synchronized nor desynchro-
nized oscillations was found to carry a privileged sta-
tus in terms of informational content in relation to
the agent’s sensorimotor activity. It is important to
notice that the analysis we have presented not only
suggests that the phase relations of desynchronous
oscillations carry relevant information about sensori-
motor behavior but, more importantly, it shows how
the informational content changes as the dynamical
description of the oscillatory network is reduced by
gradually removing the phase relation dynamics of
desynchronous oscillations.

The results also gave some insights to address the
questions: to what extent are desynchronous oscillations
as causally relevant as synchronous ones to the generation
of functional sensorimotor coordination? In our particu-
lar model, although the phase relations of oscillations
with a narrow frequency difference carried a relatively
higher causal relevance than the rest of the phase rela-
tions to sensorimotor coordinations, overall there was
no privileged functional causal contribution to either
synchronous or desynchronous oscillations. Notice that
the analysis we have presented not only suggests that
desynchronized neural activity has functional signifi-
cance to sensorimotor behavior but, more importantly,
it shows the relevance of desynchronous oscillations in
relation to synchronous ones considering a gradual
reduction of the threshold delimiting both types of
oscillations.

Some contemporary cognitive neuroscience studies
focus on synchronized activities between different brain
areas after a given stimuli onset and assume that such
activities are functional units representing the stimuli.
The high level of synchronization found by empirical
experiments represents only part of the explanatory pic-
ture that involves all of the phase relations and, as our
results have suggested, the reduction of phase relations
to synchrony might be hindering relevant information
about neural oscillatory activity. Thus, an alternative
procedure would consider the entire regime of phase
relations between distinct brain areas as the functional
unit (causally) correlated to the stimuli.
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