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Abstract. In response to the cognitivistic paradigm and its problems,
the embodied cognition viewpoint was proposed. In robotics, this re-
sulted in a radical move away from higher-level cognitive functions to-
ward direct, almost ”brain-less” interaction with the environment (e.g.,
behavior-based robotics). While some remarkable behaviors were demon-
strated, the complexity of tasks the agents could master remained lim-
ited. A natural extension of this approach lies in letting the agents ex-
tract regularities in sensorimotor space and exploit them for more effec-
tive action guidance. We will use a collection of case studies featuring a
quadruped robot to concretely explore this space of minimally cognitive
phenomena and contrast the concepts of body schema, forward internal
models, and sensorimotor contingencies. The results will be interpreted
from a ”grounded cognition” and a non-representationalist or enactive
perspective. Finally, the utility of robots as cognitive science tools and
their compatibility with different cognitive science paradigms will be dis-
cussed.
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1 Introduction

Within the cognitivistic paradigm in cognitive science (e.g., [19, 47]), thinking
is understood as a result of computation over symbols that represent the world.
On the other hand, physical activities, like walking, may be looked at as very
low-level, simple and, therefore, uninteresting with regard to the study of cog-
nition. More recently, the view of cognition as symbolic computation has been
challenged, and an embodied, action-oriented, dynamic, and developmental view
has been proposed instead (e.g., [58, 55, 39, 45, 16]). The boundaries between cog-
nitive and non-cognitive phenomena have started to blur and the key influence
of the body and the physical interaction with the environment has become ac-
cepted. Furthermore, a central role of developmental processes in the emergence



of cognition has been asserted. There is growing and increasingly detailed evi-
dence from psychology and neurosciences in support of the embodied cognitive
science view. However, the premises of the new paradigm—whole brain-body-
environment systems rather than isolated subsystems should be studied over
extended time periods—pose new challenges to practical empirical research in
animals and humans. Here, cognitive developmental robotics as a synthetic ap-
proach, i.e. instantiating and studying the phenomena of interest in robots, can
serve as a viable tool to verify certain hypotheses and complement the research
in psychology and neuroscience [44, 3, 42].

In this article3, we will first try to categorize the research in robotics from
an (embodied) cognitive science viewpoint (Section 2). Then we will use a
quadruped robot and investigate the possibilities of its autonomous develop-
ment from simple reactive to the first cognitive behaviors: from locomotion to
cognition (Section 3). The scenarios are chosen such that they can be success-
fully mastered only if the robot leaves the “here-and-now” time scale of reactive,
stimulus-response, behaviors [59]. In order to do that, the robot needs to ex-
tract some regularities from its interaction with the environment and utilize
them when selecting the next actions to take. In Section 4, we will then at-
tempt to interpret the case studies from two different viewpoints: a grounded
cognition [4] or minimal robust representationalist [9] perspective followed by
a non-representationalist or enactive account [58, 54]. In the case studies, we
explored three concepts that were proposed to explain the development and op-
eration of minimal instances of cognition: body schema (e.g., [29, 12]), forward
internal models (e.g., [61, 11]), and sensorimotor contingencies (SMCs) [39]. Con-
crete implementations in the robot help us to better understand the meaning
of each of them and implications for cognitive development—this analysis will
be the topic of Section 5. Then, the implications and limitations of using robots
as cognitive science tools will be discussed (Section 6). In particular, we will in-
vestigate, whether robots can serve as an essentially paradigm-neutral research
tool, or whether their use poses intrinsic limitations—with regard to enactive
cognitive science viewpoint, for example. We will close with a conclusion.

2 A Cognitive Classification of AI and Robotics Research

In this section we will strive to sketch a ”cognitive landscape” in order to classify
some seminal work in Artificial Intelligence (AI) and robotics from the point of
view of cognitive science. Obviously, cognition is a very difficult phenomenon and
any attempt to “pin it down” in a single diagram is bound to fail. Nevertheless,
we believe that it will still be valuable to depict some of the key facets of cognition
and their instantiation in AI and robotics in graphical form. To this end, we
propose four different axes and hence two different 2D schematics.

3 Parts of this article are based on the author’s PhD thesis [28].



2.1 Offline Reasoning Capability vs. Real-Time Responsiveness

In the first diagram (Fig. 1), the y-axis essentially follows the ”grounded cogni-
tion” viewpoint of Barsalou [4], and Clark & Grush [9], who used the capability
of offline reasoning (or “environmentally decoupled thought”) to demarcate cog-
nitive agents (from non-cognitive agents). However, if the role of cognition is
to support purposeful and timely action in the real world, the ”cognitive” axis
needs to be complemented by another dimension, which we have labeled ”real-
time responsiveness”. In other words, cognition should not come at the expense
of fast interaction with the environment.

Fig. 1. Cognitive landscape - Offline reasoning capability vs. real-time re-
sponsiveness. This figure attempts to classify selected work in AI and robotics from
the perspective of cognitive science according to the agents’ capability of “running cog-
nition offline” vs. preserving the means to respond immediately. See text for details.

In most machines, their creators decided for a single intersection of these two
dimensions—that is the control architecture operates on only one level. These
are represented by crosses on the schematics. Passive dynamic walkers [36] can
be depicted at the very bottom of the ”cognitive axis” (y-axis) as they are pas-
sive mechanical machines and are completely coupled to their physical environ-
ment. At the same time, their real-time responsiveness is maximum. Examples of
reactive agents—creatures capable of simple stimulus-response behavior only—
would also occupy the bottom of the ”cognitive axis”. The tortoises of Grey
Walter [60] were composed of direct, analog links connecting sensors and mo-



tors; consequently, the real-time responsiveness of the tortoises will be almost
as high as that of the passive dynamic walkers. Examples of Good-Old Fash-
ioned Artificial Intelligence (GOFAI), on the other hand, end up on the other
end of spectrum: The chess computer, Deep Blue, is definitely capable of offline
reasoning (pondering thousands of hypothetical evolutions of the game) and it
is subject to soft time constraints—it does not have to respond immediately,
yet its total thinking time is limited. From mobile robots, the Stanford Cart
[38] was capable of offline reasoning, yet to the extent that it had lost real-time
responsiveness (thinking around 15 minutes before every 1 m lurch)4. A modern
sibling of the Cart, Stanley (DARPA Grand Challenge winner, [57]), is capable
of autonomously planning and following a path in an outdoor environment, while
preserving very good responsiveness to the current situation on the road.

However, a single degree of ”offline reasoning capability”—cognitive, reac-
tive, or only physical—is not sufficient to master a variety of capacities that
more complex organisms demonstrate. Therefore, they typically employ a weak
hierarchy of different levels ranging from mechanical feedback loops (e.g., [6])
over simple spinal reflexes, which involve direct sensorimotor connections, to
more complex and abstracted layers that are present in the brain.

To illustrate this, we have depicted humans (”Homo sapiens”) with a large
region which ranges all the way from reactive to cognitive behavior on the ”cog-
nitive axis”. Another example of behavior-based robotics [2], next to Walter’s
tortoises, is the robot Ghenghis [7]. The so-called subsumption architecture con-
sists of different layers—all of them essentially reactive. Hence, it is also depicted
with a small region in the reactive domain rather than a single cross. The cogni-
tive architecture of the iCub humanoid robot as presented in [37] also contains
”reactive layers”, but at the same time, certain modules reach out of the sim-
ple stimulus-response realm to more decoupled processing. Both—Stanley and
iCub—are capable of offline reasoning, while preserving real-time responsive-
ness. Alas, considerable computational resources are required. Finally, ”mini-
mally cognitive robotics”—the focus of our interest—would correspond to less
”offline reasoning” and more ”real-time responsiveness” than Stanley or iCub,
building directly on top of the behavior-based robotics school.

2.2 Nature of ”Neural Vehicles” and Their Plasticity

In the second diagram (Fig. 2), we propose two additional axes. The y-axis
depicts the nature of the internal informational structures that mediate the
agent’s interaction with the world. They were called “neural vehicles” by En-
gel [15], avoiding the problematic label of “representation” (“neural” is not be
taken literally and is synonymous with internal or belonging to the controller;
more details will be provided in Section 4.2). The axis spans the space from no
neural vehicles over internal structures operating on the sensorimotor space to
symbolic spaces. The x-axis characterizes the degree to which the system has

4 It should be noted that this was largely due to the computational power available
at that time.



been engineered and remains fixed afterwards or—at the left end of the axis—
how much was learned without prior knowledge and how adaptive or plastic the
neural vehicles are.

Fig. 2. Cognitive landscape - nature of “representations” vs. their plasticity.
This figure attempts to classify selected work in AI and robotics using two additional
axes compared to Fig. 1: the character of the control structures vs. their adaptivity.
See text for details.

Humans are presumably relying on a multitude of mechanisms from direct
physical interaction with the world, to simple reflexes and spinal control, to
neural vehicles that operate on highly abstracted levels. Hence, they essentially
span the whole range of the y-axis. Their location on the x-axis depends on
the stance one takes in the ”nature vs. nurture” debate. Some capabilities were
learned on the evolutionary time scale, which—from the point of view of the
individual—represent the ”design”/engineering. Yet, the adaptive capacities of
humans are extraordinary and support the positioning toward the left end of the
axis.

Obviously, there are no neural vehicles, or representations, in the passive
dynamic walker. The other instances of behavior-based robotics rely on simple
connections of sensors and motors and are thus approaching the “sensorimotor
region” from the bottom. On the x-axis, they all have the same value, as they
were simply designed by their creators. The GOFAI examples fall on the opposite
end of the ”representation” axis, since they rely on very abstract or symbolic
internal structures. On the ”learned vs. engineered” axis, the mobile robots Cart



and Stanley display only a limited degree of plasticity (data-driven parameter
tuning was applied in [57]). Deep Blue is the most adaptive in this respect, as
it learned the position evaluation function itself from thousands of grandmaster
games. The iCub’s cognitive architecture [37] consists of numerous modules, the
core competences being centered around the sensorimotor level. The modules
feature different degrees of engineering vs. learning. Finally, the space that is
uninhabited by robots so far and that lies at the center of our interest in this
article is the ”minimally cognitive robotics” region. We will present case studies
that attempt to “colonize” this space by learning basic sensorimotor capacities,
including integration of information over time and its deployment, starting from
minimal prior knowledge.

2.3 Cognitive Developmental Robotics

The iCub humanoid robot and its positioning in our diagrams is a representative
example of cognitive developmental robotics, which can be, for example, defined
as follows:

Cognitive developmental robotics (CDR) aims to provide new under-
standing of how human higher cognitive functions develop by means of a
synthetic approach that developmentally constructs cognitive functions.
The core idea of CDR is ”physical embodiment“ that enables information
structuring through interactions with the environment, including other
agents. The idea is based on the hypothesized developmental model of
human cognitive functions from body representation to social behavior.
[3]

CDR is thus a subset of developmental robotics in general, which has the
same mission, but is not concerned with cognitive phenomena only (however,
we have to keep in mind that the boundary between sensorimotor and cogni-
tive phenomena is blurred). A review of developmental robotics is provided by
Lungarella et al. [32] or by a special issue of the Infant and Child Development
Journal [46]. A review of CDR is provided by Asada et al. [3].

What we have labeled ”minimally cognitive robotics” can be seen as a special
subset of developmental and cognitive developmental robotics that is specifically
concerned with minimal settings where the first instances of offline reasoning—
or learning from experience to avoid commitment to the representationalist
standpoint—capabilities emerge. In the next section, we provide an overview
of experiments that we have performed in a quadruped robot that demonstrate
such a developmental pathway.

3 A Developmental Pathway in a Quadruped Robot

In this section, we will present a selection of the results we obtained by in-
stantiating a ”cognitive development pathway” in a quadruped robot. The case



studies presented feature the key ingredients that are believed to be necessary for
cognition to emerge: rich body dynamics and physical interaction with different
environments, active generation of multimodal sensory stimulation and learning
from this experience over different time scales. In a first study (not reported here,
[26]), the robot first learned coordinated movement commands (gaits somewhat
resembling those seen in nature – walk, bound, pace etc.) which later formed its
motor repertoire. The other case studies deal with the sensorimotor space and
the possibility for the robot to extract regularities in it and later exploit this
experience in accordance with its goals. More details can be found in [28] and in
individual articles reporting the results.

3.1 Specifics of Cognition in a Quadruped Robot

The main platform in our work was the quadruped robot Puppy (Fig. 3). An
obvious implication of the embodied cognition stance is that the kind of cog-
nition that will emerge will be highly dependent on the body of the agent, its
sensorimotor apparatus and the environment it is interacting with. In our case,
the multimodal sensory set together with the nonlinear, partly passive, dynamics
of the body can be exploited to extract information about the body itself and
the environment. In addition, the absence of distal sensors (camera) forces the
robot to use all the modalities by actively probing the environment, which is in
accordance with the action-based view on perception and cognition.

The locomotion context is particularly suited for understanding minimally
cognitive behavior. Whereas “manual cognition”, i.e. reaching, grasping and dex-
terous manipulation, is largely restricted to humans and primates, “locomotor
cognition”, on the other hand, can be found in much lower animals. For exam-
ple, path integration was discovered in ants [64]; prediction was demonstrated in
motor preparation of prey-catching behavior of a jumping spider [52]; frogs were
found to be able to predict whether an aperture could be passed [10]; finally,
rats were found covertly comparing alternative paths in a T-maze, thus “plan-
ning in simulation” [23] (see [41] for a review). In this work, we will present the
robot with similar scenarios: path integration, terrain discrimination and gait
selection, and catching another robot.

3.2 Extracting a Body Schema from Raw Sensorimotor Data

In the first study (for details see [51]), we let the robot apply different motor
patterns and recorded the corresponding sensory stimulations from its multi-
modal sensory set comprising primarily tactile and proprioceptive sensors. Then,
we systematically analyzed the directed information flows between motors and
sensors and showed how the robot could infer a primitive map of its body by
extracting the structure of the sensorimotor space that is invariant to changes
of the controller: A random set of motor commands proved the most effective
in this respect. An information theoretic method that quantifies directed infor-
mation flows between two variables (sensory and motor time series in our case),
transfer entropy, was used. The result is depicted in Fig. 4.



Fig. 3. The quadruped robot Puppy and its sensors. It has four active revolute
joints controlled by servomotors (”shoulders“ and ”hips“, in what follows simply hips)
and four passive revolute joints at the ”elbows“ and ”knees“ (later simply knees)—the
passive joints have springs attached across them, making them compliant. There are
angular position sensors in all the joints. In addition, there are pressure sensors on
the robots feet and an inertial measurement unit (IMU – 3-axis accelerometer, 3-axis
gyroscope) on the back. The robot is 20 cm long. Labeling of channels (to be used
below). The four legs are abbreviated as FL: fore left, FR: fore right, HL: hind left,
and HR: hind right. Then, MFL, MFR, MHL, MHR correspond to the four motor
channels; HFL, HFR, HHL, HHR denote potentiometers in the hip joints, and KFL,
KFR, KHL, KHR in the passive knee joints; PFL, PFR, PHL, PHR are feet pressure
sensors, AX , AY , AZ linear accelerations in three axes, and GX , GY , GZ are angular
velocities. (Figure adapted from [51].)

Unlike the majority of work on automatic model acquisition in robotics—
reviewed in [24]—, which typically builds on significant prior knowledge and only
refines an existing representation using vision, our method is purely data-driven
and extracts the regularities intrinsic to the robot’s morphology from scratch.
Furthermore, the same approach can be used to move from an initial “synesthetic
state”—with undifferentiated sensory modalities—to an unsupervised discovery
that there are qualitatively different types of sensors.

– Proprioceptive vs. exteroceptive modality as a graded distinction.

First, we looked specifically at information flows from motor to sensory chan-
nels. Those channels that receive strong directed information from the motor
signals can be said to be “controllable” by the robot and thus reflecting the
state of the the body (under the interpretation “my body is what is un-
der my control”). Hence, these sensors can be said to have “proprioceptive”
properties. Exteroceptors, on the other hand, can be defined as sensory chan-
nels sensitive to environmental changes.5 Applying these definitions to the
information flows that the agent measured gives a graded distinction of the
sensors (see Fig. 5 (left)). Interestingly, only the angular position sensors
in the motor-driven hip joints fell clearly into the “proprioceptive” region.

5 We have systematically varied the environmental conditions—grounds of different
friction—and analyzed the data. Please see [51] for the details.



Fig. 4. Transfer entropy TE between all pairs of motor and sensory channels
using random motor commands on linoleum ground. (a) Every cell of the ma-
trix corresponds to the information transfer from the signal on the column position to
the signal on the row position. Cf. Fig. 3 for the labeling of channels. (b) A schematic
of the Puppy robot (dashed lines) with overlaid arrows depicting the TE between
the individual components. For readability, only the 15 highest values are shown and
the accelerometers and gyroscopes were excluded from this visualization. The strength
of the information transfer is encoded as thickness of the arrows. The strongest in-
formation transfer occurs from the motor signals to their respective hip joint angles
(MFL → HFL, MFR → HFR, MHL → HHL, MHR → HHR). The motors directly
drive the respective hip joints and, despite some delay and noise, the hip joints always
follow the motor commands, which induces a strong informational relation. The motors
further show a smaller influence on the knee angles (especially at the hind legs KHL

and KHR) and on the feet pressure sensors, all on the respective leg where the motor is
mounted, thus illustrating that body topology was successfully extracted (Figure from
[51].)

The other sensors—most of which would be labeled as proprioceptors using
a standard ”textbook“ definition—were found to be more sensitive to the
environment.

– Learning about different sensory modalities. According to O’Regan
and Noe [39], it is the SMCs, i.e. the structure of the rules governing the sen-
sory changes produced by various motor actions, what differentiates modal-
ities. We have applied a similarity measure to the information flows and
projected the sensors and motors to a 2D space, creating a sensoritopic
map. The resulting map (Fig. 5 (right)) shows a reasonable clustering of
angular sensors in active vs. passive joints, pressure sensors, and inertial
sensors—reconfirming the SMC hypothesis and demonstrating that no ad-
ditional knowledge is necessary. The motor modality, which has a different
”causal content“, is completely separated out on the right of the map.



Fig. 5. Sensor spaces in the Puppy robot. (left) Proprioception vs. exteroception.
(right) A Sensoritopic map. Projection of the sensors and motors into 2D space using
multidimensional scaling based on an information flow-based similarity measure. Cf.
Fig. 3 for the labeling of channels. (Figure from [51].)

3.3 Learning from Sensorimotor Experience

Whereas the previous case study had an analytical focus—how salient relation-
ships in the sensorimotor space can be extracted—, the next logical step on
the ”cognitive ladder“ is to take the agent’s perspective and study how it can
integrate its experience and use it to improve behavior. We conducted three
studies in this direction, presenting the robot with different tasks that can be
successfully mastered only if the robot learns from past sensorimotor experience.

Path integration using self-motion cues. Humans, other mammals, and
also arthropods are reported to be able to perform path integration: estimat-
ing the distance traveled without relying on an external reference [17, 14, 64, 65].
Odometers (step integrators) were found to play an important part in this capa-
bility. To estimate the length of the step (or stride), the animal seems to require
a body representation of some sort ([65] mention: knowledge about intrinsic dy-
namics of limb segment motion, relationships between gait parameters and body
proportions).

In our quadruped robot, we developed one possible solution to the problem:
an implicit (data-driven, black-box) model that linearly combines features from
multiple sensors from the robot’s legs to a stride length estimate [48, 49]. Sen-
sory features that correlated most strongly with stride length were selected and
a linear regression function that combined them into a stride length estimate was
derived, giving rise to a multimodal legged odometer. That is, we showed an ex-
ample of a procedure that can be employed by an autonomous agent: investigate
relationships between a variable of interest and the sensory (or sensorimotor)
space, select the signals with the strongest relationships, and work them out
into a function. The stride length estimates can then be aggregated over time,



giving rise to a measure of distance traveled by the agent—a first example of
integration of information over time in our agent.

Using sensorimotor contingencies for terrain discrimination and adap-

tive walking. In this study [27], a record of past experience in the sensorimo-
tor space was used to inform action selection: the robot learned to estimate the
effects of the application of different gaits in different contexts and used this
information to choose the actions that maximize a reward signal (fast and stable
locomotion). Eventually, it learned to select an appropriate subset of gaits in
different contexts (see [27] for details). No abstraction or hierarchy was used,
but a memory of almost raw sensorimotor sequences (compressed into features)
allowed the robot to detect familiar contexts and select actions accordingly. Fur-
thermore, we want to highlight two additional outcomes of this study:

– Perceptual categorization from sensorimotor sequences. Perceptual
categorization can be simplified through embodied interaction with the envi-
ronment and active generation of sensory stimuli (see e.g., [43]). In our study,
when the robot was running on different grounds, only certain, prestructured,
stimuli were inevitably induced in the sensory modalities. In addition, the
particular action used at every moment—the gait—co-determined what was
sensed. We demonstrate this effect by showing the improvement in ground
classification when data generated by different gaits are classified separately.
Furthermore, we again confirm the hypothesis (put forth in [39] and tested
in a simple robot in [35]) that object categorization (the ground being the
object here) is improved if longer sensorimotor sequences are considered.
The data from both real and simulated robot convincingly demonstrate this
(Fig. 6).

Fig. 6. Comparison of ground classification accuracies when the action con-
text is taken into account to different degrees. The first row corresponds to data
from one sensory epoch collapsed across all gaits, i.e. without the action context. Sub-
sequent rows report results where classification was performed separately for each gait
and increasingly longer histories were available. ”Mean“ values represent the mean per-
formance over the individual classifications runs preconditioned on the gait the robot
was using; ”best“ are classification results from the gait that facilitated perception the
most. (left) Real robot. (right) Simulated robot. (Figure and caption from [27].)



– Compression of sensorimotor space through embodiment. We em-
ployed a model presented in [35] and adapted it to our situation. An exhaus-
tive approach to remembering sensorimotor experience was used: the agent
did not try to explicitly extract the structure of the sensorimotor space and
store it in a compressed form; instead, every new action-observation combi-
nation and their history of up to 4 epochs (10 seconds in total) was added to
the memory. Although the theoretical dimension of the sensorimotor space
was enormous, due to the constraints imposed by the morphology of the
robot’s mechanical and sensory system, the nature of the interaction with
the environment, the action repertoire, and the action selection algorithm,
only a small portion of the theoretical state space was visited (2 to 4% of
possible states; see [28] for the details). This is in accordance with previous
findings on how sensorimotor information is structured through embodiment
[33]. That is, the regularities in the sensorimotor space assist the robot in
dealing with the curse of dimensionality.

Moving target seeking with forward and inverse models. This study [40]
constitutes our last step of incremental cognitive development in a mobile robot.
We prepared a scenario in which a “hunter” robot needs to catch its conspecific
“prey” robot6. The scenario was manipulated in order to investigate under which
conditions more elaborate planning becomes necessary and what are the best
candidates for the implementation. The “hunter” robot was progressively forced
by the task-environment to employ less reactive and more cognitive strategies.
Finally, it arrived at a multi-step planning architecture: a “decoupled” forward
model, which can be executed independently. This corresponds to the “cognitive
hallmark” proposed by Clark and Grush [9]. The specific points addressed were:

– Learning a forward model.A forwardmodel predicting the robot’s change
in position and orientation was learned through random exploration of the
effects of different gaits. An egocentric reference frame was used and no
prior knowledge about the platform (such as its kinematics or dynamics)
were necessary.

– Goal state and inverse modeling. In order to reach the goal state—
coming as close as possible to the prey robot—, an inverse model became
necessary. That is, given a current position and orientation and a desired one,
the output was the best action to take. This was obtained through simple
Bayesian inference.

– Multi-step planning. We presented the robot with different scenarios:
whereas a simple application of the inverse model yielded satisfactory results
in some scenarios (hunter and prey in a wall-enclosed arena), in others (open
environment) it did not suffice. There, we studied how multistep planning

6 In this study, simulated Khepera robots with a discrete ”gait repertoire” to mimic
the situation in the quadruped robot were used. Perception of the hunter’s and
prey’s position were simplified and “GPS” signal available in the simulator was
used. Experiments on simulated models of the Puppy robot are under way.



can improve the results. In order to cope with a combinatorial explosion of
possibilities, a heuristic best-first-search was implemented.

– Extending modeling to other agents. Finally, the utility of explicitly
modeling a part of the environment (the “prey” agent) was evaluated and
successfully incorporated when it improved the agent’s performance. In this
way, the agent extended the space of its “cognitive processes” to other agents.

4 Two Sides of the Same Coin? A “Grounded

Representation” vs. a Non-representationalist

Perspective on the Case Studies

In a nutshell, the case studies presented are concerned with the structure of the
sensorimotor space: How it is shaped by an agent’s body and dynamic inter-
action with the environment and how invariant relationships can be extracted
and exploited by the agent to improve its behavior. While, on one hand, the
performance of the robots in the tasks ”speaks for itself”, there are still many
conceptual questions pending. In particular, should extracting and exploiting
past sensorimotor experience be equated with the notions of storage, knowledge,
representation, or offline reasoning? In this section, we will attempt something
that is rarely undertaken: We will interpret the very same results from two dif-
ferent perspectives: one that posits representations followed by one that rejects
them.

4.1 Increasing the Offline Reasoning Capability from Bottom-up: a

Minimally Representationalist Account

The case studies presented lend themselves easily to an interpretation along the
lines of ”grounded cognition” [4] and ”minimal robust representationalism” that
was proposed by Clark & Grush [9] in defense of the notion of representation in
cognitive science as well as robotics. This view essentially suggests that through
processes of internalization and decoupling, cognition can eventually ”run in the
brain” [9, 63].

The ”Extracting a body schema” case study (Section 3.2) can be naturally
viewed as the robot building a sensorimotor representation of its body—a corre-
spondence between the structure it learns (the representation) and the physical
and sensorimotor properties of the robot (what is being represented) can be
established. This primitive, sensorimotor structure is extracted solely from the
sensory and motor channels and is thus automatically grounded. In the ”Path
integration” study, the robot builds what could be called a ”locomotor body
schema”, i.e. a model of how much distance it covers every stride. Yet, this
”legged odometer” was tuned by using an external reference frame; thus, the
”grounding” of this representation—position and orientation in a Cartesian ref-
erence frame—is mainly on the side of the observer. The ”Terrain discrimina-
tion and adaptive walking study” lends itself to a representational interpreta-
tion too. The sensorimotor histories that are stored in the associative memory



(”the brain” of the agent) can be looked at as knowledge or representation
of the robot’s previous interactions with the world. They can also be used to
classify the environments, replayed or iterated forward to get predictions and in-
form action selection—in accordance with the ”offline cognition” notion. Finally,
the ”Moving target seeking” study serves as a perfect example of a bottom-up
development of an internal simulator/emulator [9, 22]: the robot learns a for-
ward and inverse model of the outcome of applying different motor commands.
Later—in order to succeed in the task of catching its conspecific—it also learns
a model of the ”prey’s” behavior and applies a multi-step planning algorithm.
This demonstrates an increasing degree of offline reasoning and matches with
the evolutionarily plausible path how internal representation (in the form of em-
ulator circuitry) could possibly get its foot in the door of real-world, real-time
cognition [9].

4.2 Enactivism and ”Cognition-is-not-in-the-Brain” Viewpoint

Interestingly, we can try to embrace the very same case studies into a more
radical school of thought that rejects the neurocentric perspective on cognition
altogether. A unique perspective on cognition has been offered by the community
that has grown around the work of Francisco Varela (e.g., [58]). The proponents
of the enactive framework reject the idea that ”cognition often proceeds inde-
pendently of the body“[4]. For the ”enactivists”, cognition is not only shaped by
the body and its action possibilities, but cognition is action—embodied action,
a form of practice itself [58]. In this view, cognition is not about world-mirroring
through representations, but ”world-making“ and sense-making. The interested
reader is referred to the abundant literature (e.g., the recent collection of papers
in [54], reviewed in [20]).

We will borrow useful terms from Engel et al. [15, 16] who provide a review of
a turn toward action in cognitive science and propose the term dynamic directive
to ”denote the action-related role of large-scale dynamic interaction patterns
that emerge in a cognitive system. On this account, directives can be defined
as dispositions for action embodied in dynamic activity patterns.” Importantly,
the directives are not equal to states in the brain (and thus are not equal to
action-oriented representations; see also [30] for a detailed philosophical account
of this distinction), but refer to dynamics of the whole—or relevant parts of
a—brain-body-environment system. At the same time, it may be convenient to
invoke a term for the ”traces” of the directives in the brain: These are the neural
vehicles of the directives [15].

Some of the results we have presented are not compatible with this viewpoint.
For example, the path integration case study was devoted to the learning of a
position and orientation estimation module trained by an external reference.
Moreover, in this particular study, no action selection was performed based on
the path integration results. Thus, this task had little significance or meaning
for the robot. In summary, the focus was on a veridical representation of the
position of the robot in the environment—an emphasis that is incompatible
with the formulations that belong to enactive cognitive science.



Let us look at the ”adaptive walking” and the ”moving target seeking” stud-
ies. There, the robot had to optimize its behavior on a task—fast and stable
walking in the former case, catching another robot in the latter. To this end,
different control architectures that could assist the robot in the task were ex-
plored. In the predator-prey scenario, the ”neural vehicles” were data-driven and
learned ab initio, but the structure of the model (a simple Bayesian network),
the variables of interest (distances and angles), and the goal (catching the prey)
came from the designers. The ”world-making” of the robot has thus been rela-
tively strongly constrained and imposed on the robot from the outside. Finally,
the ”adaptive walking” study, where a model of sensorimotor contingencies is
employed, could probably be most in line with an enactive viewpoint. The robot
simply records past sensorimotor experiences (the gait used and all the sen-
sory channels compressed into features) together with the values of the reward
function and uses this information to inform future decision-making: selecting
the gait that is most likely to succeed on a given ground. The ”neural vehicle”
thus contains raw sensorimotor ”footprints” of the robot’s interaction with the
environments and uses them for action guidance. The individual terrains are
nowhere explicitly coded in the neural substrate—they are implicitly recognized
by selecting appropriate actions. Yet, the reward function was again defined from
the outside and the ”sensorimotor look-up table” that is driving the behavior
at discrete time steps is perhaps still too decoupled from the dynamics of the
body and environment when compared to the—alas much simpler—dynamical
accounts of active categorical perception [5, 8]7.

5 Body Schema, Forward Models, and Sensorimotor

Contingencies: On their Overlap, Definition, and

Degree of Representational Nature

We have set out to investigate bottom-up development of minimally cognitive
abilities. On this path, we have repeatedly encountered three concepts: body
schema, forward internal models, and sensorimotor contingencies (SMCs). We
have explored them in different disguises in our robotic case studies. What can we
now say regarding their nature, utility and compatibility with different cognitive
science paradigms?

As reported by Rochat [50], infants spend substantial time in their early
months observing and touching themselves. Through this process of babbling,
intermodal redundancies, temporal contingencies and spatial congruences are
picked up. This basically encompasses all the low-level relationships that an
agent can learn during its early development. However, this space is too large.
Therefore, in order to bootstrap its development, an agent needs to focus on
some subspaces of the sensory-motor-time space and choose an appropriate way

7 Note that the perceptual categorization we performed in Section 3.3 used solely the
sensorimotor memory, i.e. the neural structure. Beer or Buhrmann et al. [5, 8], on
the other hand, show that in their examples, this is not possible.



of modifying its internal dynamics in accordance with these regularities and its
goals. The three aforementioned concepts qualify as suitable candidates in this
regard.

5.1 The ”Minimally Cognitive Concepts” in the Case Studies

– Body schema. As we have argued, the body has a key influence on the
agent’s behavior as well as on the information that enters its brain/controller
(see [25] for a collection of examples illustrating this). Therefore, it can bring
advantage to the agent if it can pick up the regularities that are induced by
its body. The concepts of body schema and body image are used in this
context. However, at the moment, they serve more as “umbrella concepts”
for a multitude of body representations that animals and humans develop
and use (cf. e.g. [12]). The synthetic approach allowed us to explore these
concepts in more concrete terms. In the “Extracting a body schema” study
(Section 3.2), we investigated two possibilities for the formation of a prim-
itive body representation in a robot. First, we studied the structure of the
sensorimotor space that is invariant to changes in the motor commands and
the environment—that is, body as the invariant structure in sensorimotor
space. Second, we studied which sensory channels were strongly affected by
the motor signals. This provides an alternative view: the agent’s body is
what it can control. Both viewpoints can have merits for the agent: the for-
mer one could be used for self-diagnosis (if the invariant structure changes,
this can be attributed to changes in the body), the latter one can be used
to bootstrap development—learning the first behaviors. Yet, this is just the
very beginning and subsequent development needs to be demonstrated. A
more narrow type of body schema or image devoted specifically to estimat-
ing the robot’s stride length was developed in the “Path integration” case
study.

– Forward model. Forward model is another type of mapping that can be
useful to the agent. It can be used to predict the next sensory state (given
the current state and a motor command) or—if chained or iterated—even
to simulate whole sensorimotor loops covertly. It is concretely defined8 and
can be instantiated at any abstraction level (i.e., not only for low-level mo-
tor control, where the existence of forward internal models is subject to a
heated debate – cf. for example [11] vs. [18]). We have explicitly employed
probabilistic forward and inverse models in the ”Moving target seeking”
study. The architecture used in the ”terrain discrimination and adaptive
walking” study that is using conditional probability distributions [35] also
encompasses forward model functionality.

– Sensorimotor contingencies. Sensorimotor contingencies (SMCs) were
originally presented in the influential article by O’Regan & Noe [39] as the

8 The forward model is classically thought of as a function, f(st,m) = st+1, which
maps a sensory state and a motor command to a next sensory state (where the states
can be multidimensional).



structure of the rules governing sensory changes produced by various mo-
tor actions. Similarly to a body schema, this notion is still not articulated
concretely enough to allow for an implementation in a robot. For example,
is a forward model an instance of an SMC? Also, what is the ”site” where
the SMCs reside—are they stored in the brain? Very recently, Buhrmann
et al. [8] have addressed these questions and proposed a dynamical systems
account of SMCs, distinguishing between Sensorimotor (SM) environment,
SM habitat, SM coordination, and SM strategy. The SM environment is the
relation between motor actions and changes in sensory states, independently
of the agent’s internal (neural) dynamics. Interestingly, this definition closely
resembles the forward model that we have encountered before.9 The other
notions—from SM habitat to SM strategies—add internal (”brain”) dynam-
ics to the picture. SM habitat refers to trajectories in the sensorimotor state
space, but under certain conditions on the internal dynamics that is re-
sponsible for generating the motor commands. These are thus not random
anymore and may depend on previous sensory states as well—an example of
closed-loop control. SM coordination then further reduces the set of possi-
ble SM trajectories to those ”that occur reliably and contribute functionally
to a task”. For example, specific patterns of pressing an object in order to
assess its hardness would be SM coordination patterns serving object dis-
crimination. Finally, SM strategies take, in addition, a normative framework
(”reward” or ”value” for the agent) into account.

Taking advantage of this operationalization of the SMC concept, in what
disguises can we find SMCs in our case studies? In the study described
in Section 3.210 random motor commands were applied (hence there was
random or no neural dynamics) and the relationships between motor and
sensory variables were studied, closely resembling the notion of SM environ-
ment.11 Then, we also studied the relationships in the sensorimotor space
when the robot was running with certain coordinated movement patterns:
gaits. These were obtained by optimizing the robot’s performance for speed

9 The functional form was provided in the previous footnote. However, if the sensory
state does not fully define the state of the system—which is likely given that the
internal neural as well as environmental variables are ignored—it is easy to imagine
that this mapping will not be right-unique and thus, mathematically speaking, seize
to be a function. The SM environment is an even more general relation, a superset of
multiple forward models. In discrete terms, it would have the form R(m,st+1 − st).

10 Note that the Section’s name is ”Extracting a body schema from raw sensorimotor
data”, illustrating the confusion of terms.

11 The particular details differ though. First, due to the dimensionality of the sensori-
motor space, we studied relationships between pairs of variables only. On the other
hand, as opposed to SM environment, we included sensory-sensory pairs as well. In
addition, we applied a particular information theoretic measure, transfer entropy,
which allowed us to assess the amount of directed information transfer between in-
dividual variables. In this way, information was compressed and salient relationships
could be discovered, but at the same time, it did not contain all the information
present in the original data.



or for turning [26] and thus correspond to patterns that are functionally
relevant for the robot and even carry a normative aspect. Thus, our find-
ings about the sensorimotor space using the gaits (results shown in [51]) can
be interpreted as studying the SM coordination or even SM strategy of the
quadruped robot. In the ”adaptive walking” study, a similar repertoire of co-
ordinated gaits was used. While exercising these in different environments,
the robot was taking a record of all the combinations of sensory and motor
variables (discretized and compressed into features over 2 second intervals).
A reward associated with every sensorimotor state was stored and later used
to inform action selection. Thus, the items in the associative memory consti-
tute discrete slices that witness and at the same time influence the robot’s
SM strategies. Buhrmann et al. [8] also highlight how the space of possible
sensorimotor trajectories—in the original sensorimotor space—is narrowed
down as one goes from SM environment to SM coordination. In our example,
we quantified the overall compression of a theoretical full sensorimotor state
space as a result of embodiment and the action selection (internal dynamics)
in Section 3.3.

5.2 Clarification

Let us now try to directly compare the ”cognitive concepts” that we discussed
above in terms of their mathematical formulation, representational nature, and
site—where they are located. With the help of the analysis that follows, we will
fill up Table 1.

– Mathematical formulation. As we have argued, a body schema is a very
loosely defined notion and to talk about a mathematical formulation is out
of question. A forward model, on the other hand, can be defined precisely as
a function. SMCs were also defined rather loosely, but acquired a concrete
articulation in dynamical systems terms in [8].

– Representational nature. The term ”body schema” is usually equated
with a body representation. It thus seems to imply a ”representationalist”
view of the mind. Alsmith & de Vignemont discuss this theme in detail in [1].
A forward model is simply a function on motor and sensory variables, which
is per se neutral with respect to the ”representationalist dispute”. Of course,
representational nature can be ascribed to it if one posits that this mapping
is stored in the brain and ”stands in” for some extraneural states of affairs,
as done by Clark & Grush [9], for example. The position of SMCT12 (in its
original formulation [39]) on representations was not clear—for sure it was
detailed, pictorial representations, ”mirrors of the world states“, that SMCT
was arguing against. Buhrmann et al. [8] in their definition and treatment
argue clearly against a representationalist interpretation and show that the
SMCs—as trajectories in the sensorimotor space—are emergent from the
dynamics of the body, brain, and environment (similarly to the dynamic
directives proposed in [16]).

12 Sensorimotor Contingency Theory



– Site. A body schema is usually thought to reside in the brain—even if in
a highly distributed manner, encompassing for example area SI, area 5 in
the parietal lobe, and premotor cortex [21]. The existence of forward models
in the brain is also supported by extensive literature, in particular on the
cerebellum (e.g., [31, 11]). SMCs are a result of the joint dynamics of the
brain, body, and environment; an analysis of the simple agent in [8] reveals
that ”there is nothing in the internal dynamics of the agent’s ”brain” that
represents the SMCs that are being enacted or the non-actualized sensori-
motor regularities that still have a dynamical influence.” Yet, some neural
vehicles that support the SMCs on the part of the brain seem inevitable
and are expected in various brain areas—visual SMCs are discussed in [39];
Engel et al. [16] discuss the role of premotor circuits, for example.

Table 1. Properties of different minimally cognitive concepts.

Body schema Forward model SMCs (according to [8])

Mathematical description N.A. Function Trajectory in S-M space

Representational nature Yes Neutral No

Site Brain Brain Brain-body-environment

6 Robots as Cognitive Science Tools: Are There Intrinsic

Limitations?

The methodology adopted in this work was a synthetic one [44]. That is, we built
and then studied the behavior of artifacts. As can be seen in Fig. 7, the area
spanned by synthetic sciences can be further subdivided into (1) the intersection
with empirical sciences—synthetic modeling, (2) the middle area concerned with
general principles, (3) the intersection with the application domain in the form
of prototypes of new technology.

The scenarios presented here (Section 3) were inspired by skills that were ob-
served in lower animals and serve as instances of the simplest behaviors that we
would consider cognitive. Yet, do the case studies presented in this work qualify
as synthetic modeling, i.e. as models of biological cognition too? Given that we
do not treat cognition as an exclusively biological phenomenon, this possibility is
open. However, the parallel between biological cognitive agents and the artificial
ones remained on an abstract level—we did not relate directly to any empirical
data from the animal kingdom. Along the lines of the critical account in [62],
one could argue that this is an example of the ”animat” approach to modeling
cognition and that more direct parallels to concrete instances of cognitive phe-
nomena in biology are desirable. Several proposals in this direction are put forth
in [42]. This would be one possible direction of future work (sketched in Section
8.3.3 in [28]).



Fig. 7. Overview of approaches to the study of cognition. The figure and caption
are adapted from [44] to the study of cognition rather than intelligence. On the left,
we have the empirical sciences like neurosciences and psychology that mostly follow
an analytic approach. In the center, we have the synthetic ones like AI and cognitive
robotics which can either model natural agents (this is called synthetic modeling—
the intersection with empirical sciences) or alternatively can simply explore issues in
the study of cognition without necessarily being concerned with natural systems. This
activity may give rise to prototypes and eventually to full industrial applications, such
as autonomous robots.

6.1 The Difficulty of Modeling without Representations

Interestingly, we find that the ease of the synthetic modeling endeavor will
depend on the cognitive science paradigm that one is following. Under cogni-
tivism / GOFAI, the body and interaction with environment was of marginal
importance, so the robots were not necessary in the first place. Moreover, the
representations—models of the world—were often symbolic and directly corre-
sponded to objects in the world (in their designers’ eyes). The quality and func-
tioning of the cognitive layer was thus easy to assess. This was obstructed slightly
under connectionism, as the models became less transparent due to their sub-
symbolic nature. Embodied cognitive science then brought about the necessity
for considering whole brain-body-environment systems. However, even within
embodied cognitive science, the different viewpoints that we have outlined in
Section 4 impact on the research methodology. First of all, the move away from
veridical to action-oriented or context-dependent representations means that the
quality of the internal control structures cannot be assessed by a direct compar-
ison with some objects in the world anymore. The viewpoints that reject rep-
resentations altogether go even further in this and imply that no answers will
be found in the control structure alone [5, 8]. This is analogous to the situation
in neurosciences where Engel et al. [16] propose to replace techniques studying
neural responses to passive stimuli by studying subjects actively interacting with
their surroundings, which brings about many practical difficulties.

6.2 Enactive Robots Subject to Precarious Conditions?

The enactive viewpoint can be taken even further: Di Paolo [13] points out that
in order to fully understand cognition in its entirety, embedding the agent in a



closed-loop sensorimotor interaction with the environment is necessary, yet may
not be sufficient in order to induce important properties of biological agents
such as intentional agency. In other words, one should not only study instances
of individual closed sensorimotor loops as models of analogous loops in biolog-
ical agents—that would be the recommendation of Webb [62]—but one should
also try to endow the models (robots in this case) with similar properties and
constraints that biological organisms are facing. In particular, it has been ar-
gued that life and cognition are tightly interconnected [34, 56] and a particular
organization of living systems—which can be characterized by autopoiesis [34] or
metabolism for example—is crucial for the agent to truly acquire the meaning in
its interaction with the world. While these requirements are very hard to satisfy
with the artificial systems of today, Di Paolo [13] proposes a way out: robots need
not metabolize, but they should be subject to precarious conditions. That is, the
success of a particular instantiation of sensorimotor loops or neural vehicles in
the agent is to be measured against some viability criterion that is intrinsic to
the organization of the agent. The control structure may evolve over time, but
the viability constraint needs to be satisfied, otherwise the agent ”dies”. The
unfortunate implication, however, is that research along these lines will hardly
fit into the full synthetic methodology scheme (Fig. 7) anymore, since machines
whose functioning is not deducible from their control structure and that cannot
be given tasks will not easily find their way to application scenarios in industry.
On the other hand, this approach may give rise to truly autonomous robots.

7 Conclusion

We focused on autonomous cognitive development and engaged robots in a num-
ber of scenarios that can be seen as a developmental pathway from reactive to
minimally cognitive behavior. We have experimented with different control archi-
tectures and assessed their performance in different tasks. We have also analyzed
the nature of these control architectures from the point of view of different cog-
nitive science paradigms. We found that our case studies lend themselves easily
to interpretations along the lines of ”grounded representation” and internal sim-
ulation/emulation theories [4, 9, 22]. On the other hand, if one looks into the
details, they are much less compatible with the non- (or anti-) representational
or enactive perspectives [58, 54].

The minimally cognitive ”building blocks” or notions were also subject to
investigations in our case studies. Our results and analysis contributed to a
conceptual clarification here. Interestingly, only a forward model seems to be a
useful building block that can be deployed in the control structures of robots
and serve different purposes—a kind of useful ”brain motif” [53] perhaps. A
body schema is at the moment an ”umbrella term” for a multitude of body
representations that can be used for action. This notion is, however, far from a
formulation that could be ”deployed” in a control architecture. Similarly, SMCs
do not constitute a building block either; instead, at the moment, they are rather



a descriptive concept, which may prove useful in the analysis of natural and
artificial cognitive systems.

Finally, we have evaluated the potential of robots as modeling tools for cog-
nitive science and the implications of this way of modeling regarding the choice
of cognitive science paradigm. Adopting an embodied, yet representation-based
view, is a convenient choice that creates bridges between the research in psy-
chology, neuroscience and robotics (as elaborated recently under the “grounded
cognition” umbrella in [42]). In line with the synthetic approach and a func-
tionalist stance, a particular cognitive architecture may serve as a model of
certain parts of the brain and at the same time provide an interesting tool for
autonomous robotics, for example. Still, it remains to be shown if human-like lev-
els of complexity can be attained. On the other hand, truly enactive robots seem
to be much harder to realize. Models that are compatible with this view are to
date of minimal complexity and bear no application potential. From a designer’s
perspective, achieving an appropriate ”shaping of dynamical tendencies that
channel appropriate actions on the basis of past experience and in accordance
with goals” [8] seems to be much harder than adopting the representationalist
stance and tuning a world model of one form or another. Therefore, synthetic
enactive approaches in robotics still need to demonstrate their scalability and
potential.
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